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Pharmaceutical discovery relies on the screening of chemical libraries that are as diverse as
possible yet constrained in favor of compounds possessing attributes that are normally
associated with successful drug candidates. We describe a new algorithm for simultaneously
addressing both objectives, providing an effective means to increase structural diversity in a
chemical library while maintaining a bias toward compounds that retain the desirable properties
of drugs. The LASSOO algorithm exploits differences in descriptor distributions to identify
novel compounds that are most dissimilar to the members of an existing screening library and
most similar to members of a target library with desirable characteristics. We illustrate the
LASSOO technique using publicly available compound databases and bit string descriptors.
The architecture of the algorithm is general enough to allow any set of descriptors or similarity
measures to be employed, and it is easily adaptable to other means of directing diversity, such
as the avoidance of toxicity and/or poor pharmacokinetic properties.

Introduction

High-throughput screening capabilities, combined
with advances in combinatorial chemistry, have made
possible routine screening of increasingly large chemical
libraries in the search for bioactive lead compounds.1
In principle, the chances of uncovering active com-
pounds grow with library size, thus providing impetus
for screening very large libraries. However, a brute force
approach of blindly increasing library size to improve
the odds of uncovering active leads is neither efficient
nor sufficient. Rapid, random expansion of a library
could result in a significant chemical redundancy; hence
the amount of additional information provided is fre-
quently far offset by the consumption of resources.
Furthermore, even huge libraries are insufficient if they
are devoid of compounds possessing some essential
pharmacophore. To address both concerns, a number of
diversity-based methods have been devised for selection
of nonredundant structures which cover the greatest
possible fraction of “chemical space” as measured by any
particular set of descriptors.2,3

While chemical diversity and coverage are clearly
desirable attributes of a screening library, the quality
of compounds comprising such libraries is equally
important.4 Compounds screened against biological
targets should have attributes consistent with their
intended end use as pharmaceuticals.5 All else being
equal, a library enriched with “drug-like” compounds
is considered superior to a library without such a bias,
simply because any active leads discovered are less
likely to be eliminated downstream during lead opti-
mization and clinical evaluation.

Empirical rules for evaluating compounds as potential
pharmaceuticals have been used by medicinal chemists
for some time. For example, constraints on molecular

weight, log P, the number of heteroatoms, or the
presence or absence of certain chemical functionalities
have been described.6,7 More recently, computer-aided
quality evaluation methods based on pattern recognition
have been implemented, facilitating automatic assess-
ment of how drug-like a compound appears to be.8,9

Rules and classification methods are useful for evaluat-
ing existing or even virtual compounds, but how such
methods should direct selection of compounds for con-
struction or augmentation of a screening library is not
clear. Simply filtering out unacceptable structures or
selecting some subset that appears most drug-like does
not guard against the addition of numerous closely
related analogues. Moreover, because such approaches
ignore the composition of any existing library, it is
entirely possible that compounds will be selected which
are highly similar to those that one already has. One
potential solution is to utilize diversity-based selection
criteria either before or after the filtering steps. How-
ever, this simple “intersection” of drug-like properties
and chemical diversity can lead to the acquisition of
compounds that are far from optimal. What is needed
is a means of directly coupling the two driving forces,
so that compounds with favorable attributes are selected
while the overall diversity of the library is simulta-
neously improved.

Here we describe a new algorithm, LASSOO (Library
Acquisition with Simultaneous Scoring to Optimize
Ordering), that facilitates selection of compounds for
addition to an existing chemical library. The algorithm
is intended to prioritize compounds that are most
similar to a specified set of favorable target molecules,
and, at the same time, most different from compounds
that reside in the library which is being augmented. Our
goal is to strike a balance between simply “filling holes”
for the sake of increasing diversity per se and restricting
interest to only those compounds conforming to some
rigid predefined notion of quality.
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Overview of the Strategy

Figure 1 illustrates the general premise behind LAS-
SOO. Here, libraries are represented in a hypothetical
two-dimensional descriptor space. Individual compounds
are denoted by circles in the upper set of panels, while
localized regions of elevated compound density are
shown in the lower panels. The target library is com-
prised of compounds which have desirable characteris-
tics, for example, known drugs, and the internal library
contains compounds that have already been acquired.
In the composite library, compound densities from the
target and internal libraries are combined to define
regions of descriptor space that are favorable (light) and
unfavorable (dark). This shading reflects the numerical
score that a compound from an external library would
receive if it were a candidate for addition to the internal
library. For example, the upper left corner of space is
heavily populated by desirable target compounds yet
devoid of any density from the internal library, so an
external candidate compound located in this region
would receive a favorable score. Conversely, a candidate
compound located in the lower left corner would receive
an unfavorable score because there are no target
compounds in this region, and the existing internal
library already exhibits a high density of compounds
there. Note that the lower right corner (circled) is
neither distinctly favorable nor distinctly unfavorable
because this region is populated in both the target and
internal libraries. Regions where density is lacking in
both the target and internal libraries, such as the upper
right area, also receive a neutral score.

The LASSOO algorithm treats each library as a pool
of records. A record is a unique point in descriptor space
that is occupied by one or more compounds in a library,
with a many-to-one mapping occurring whenever the
descriptors are unable to distinguish certain compounds
from each other. A pool is simply the collection of records
generated by a library. Each record in the external
library is evaluated or scored according to its position
in the descriptor space and the corresponding local

density of records arising from the target and internal
libraries. Local density is based on probing the region
around a point in space and counting the number of
records in the pool that are within some threshold
distance of that point. Density arising from the target
library adds a positive or favorable contribution to the
score, while density from the internal library makes a
negative or unfavorable contribution. Records with the
highest scores thus provide the best candidates for
inclusion in the internal library.

We note that while records are scored here using only
target and internal pool densities, it is possible to
employ any number of pools encoding desirable or
undesirable characteristics. For example, one may wish
to avoid compounds that are likely to be toxic or which
may have poor pharmacokinetic properties. Accordingly,
a library containing these sorts of compounds could be
constructed and used to provide additional negative
contributions to the scores of external compounds.

To assess the utility and parameters of LASSOO, a
fraction of the target library was removed and used to
“spike” the external library. Performance is then mea-
sured by the algorithm’s ability to locate these spiking
compounds while maintaining diversity in the internal
library. For comparison, baselines of performance are
established by “turning off” either the target density
contribution or the internal density contribution to the
score. When target density is turned off, the algorithm
simply tries to fill holes in the internal library, with no
particular attention being paid to adding compounds
with desirable properties. Conversely, when internal
density is ignored, the entire focus is on acquiring
compounds that are most similar to the target collection,
irrespective how much redundancy results.

Methods

Compound Libraries. Testing was conducted on libraries
of compounds taken from the Available Chemicals Directory
(ACD version 98.2), National Cancer Institute (NCI3D version
94.1a), and Comprehensive Medicinal Chemistry (CMC3D
version 98.1) databases.10 After performing a series of filtering
steps (vide infra), the remaining compounds were used to
define the various libraries required by LASSOO. The ACD
database served purely as a source of compounds for the
external library, while the NCI database provided a starting
point for the internal library. Because of its high content of
pharmaceuticals and clinically evaluated compounds, the CMC
database was used to supply drug-like compounds for the
target library and for the purpose of spiking the external
library.

No filtering was applied to the NCI database, and thus all
126 554 compounds contained therein were used to provide a
pool of records for internal libraries. The ACD collection was
filtered to remove compounds that did not contain at least one
carbon atom, which left 249 867 entries. Filtering the CMC
was more complex, as a number of nondrug or unclassified
compounds appear in this database. First, compounds with
missing, ambiguous, or otherwise unusable structures (non-
standard elements such as X, R; amino acid codes; etc.) were
discarded. Next, compounds of unspecified therapeutic class
as well as compounds which have no real medicinal value, for
example, adhesives, disinfectants, herbicides, lubricants, pro-
pellants, solvents, etc., were removed following a literature
procedure.11 This left 5 753 CMC compounds with genuine
therapeutic applications to serve as the target library.

Structural Descriptors. Compounds were characterized
using the MDL keys, which were accessed using the MOLS-
KEYS feature of the ISIS program.12 These binary descriptors

Figure 1. Schematic depiction of compounds (top row) and
corresponding local densities (bottom row) in a two-dimen-
sional descriptor space. Target and internal libraries are
illustrated, together with the composite of both libraries. Top
row panels depict individual compounds; open circles represent
target pool records; filled circles represent internal pool records
(see text for details). Bottom row panels depict local densities
corresponding to records shown in the panels immediately
above them. Regions of descriptor space that are (relatively)
overpopulated with target records are light, and regions
overpopulated with internal records are dark. For the situation
illustrated, LASSOO favors external records corresponding to
light regions and disfavors records in dark regions.
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are based on 166 predefined substructure queries which encode
the presence or absence of numerous types of two-dimensional
fragments and functionalities. Although they do not rely on
any sort of exhaustive enumeration of substructures, several
studies have shown the MDL keys to be effective descriptors
for classification and clustering of biologically active mol-
ecules.13,14

Dissimilarities between pairs of compounds were measured
using city-block distances, which, in the special case of binary
descriptors, is simply the number of positions at which the
two bit strings differ, i.e., the logical XOR summation. This is
perhaps the simplest means of measuring distance between
binary representations, and it is less influenced by compound
size than the well-known Tanimoto coefficient.15,16

MDL keys were exported for each filtered database, and
compounds with identical bit string representations were
collapsed to a single record. This procedure reduced the counts
of unique records to 105 219 for the NCI, 165 858 for the ACD,
and 5 487 for the CMC. From this point on, records and pools
replaced the more familiar notions of compounds and libraries.

Scoring Function. External record scores are a function
of the local densities due to target and internal pool records,
as observed at the coordinates of the external record. If we let
NTk(d) and NIk(d) represent the number of target and internal
records, respectively, that are located within a distance d of
external record k, and we let A(d) be an attenuation function
that drops to zero beyond some threshold distance, then the
score for external record k may be represented as

Terms associated with each pool are weighted to reflect the
role of the pool in scoring. For results presented in this work,
the (favorable) target pool weighting factor, RT, is unity, and
the internal pool weighting factor, RI, is negative unity. In
addition, terms for each pool are normalized by the total
number of records in the pool to reduce the influence of pool
size on scores. The attenuation function returns a full or near
full count of records for shorter distances but, for a smoothly
decaying form, gives progressively less weight to members of
the target and internal pools that are increasingly distant from
the external record being scored.

Local density values primarily reflect library composition
but will obviously depend on the attenuation function used to
calculate them. Accordingly, choice of the parameters that
define A(d) has direct bearing on scores and, ultimately, on
method effectiveness. In our experiments, we vary both the
shape of A(d) as well as the threshold distance beyond which
the function is zero. Shapes investigated include a step
function, a linear ramp, an inverted parabola, and a Gaussian
curve. For a threshold distance of dlimit, these functions are
defined accordingly:

The Gaussian function is defined so that it decays to 0.01 by
the time the threshold distance is reached.

We note an alternative to eq 1 that yields equivalent scores
and is amenable to continuous distance functions is possible.
Rather than summing over the counts of records at discrete
distances from records being evaluated and then normalizing

by pool size, summation may be performed over the contribu-
tions of each target and internal pool record to local density
followed by normalization. Iterative updating would then
involve simply adding contributions of accepted external
records and normalizing by the new internal pool size. Use of
explicit counts of nearby target and internal records (eq 1) is
useful, however, when a number of different attenuation
functions are being evaluated. This is because a single table
of distance counts associated with each external record may
be used for many experiments. Once a suitable threshold and
attenuation function are identified, summation over record
contributions to local densities could be used to compute scores.
Continuously valued distance functions may be employed with
eq 1 simply by assigning distances to a discrete set of “bins”.

The present work is concerned with identification of a
suitable set of parameters for the MDL keys in combination
with a city-block distance measure. Within this system, the
maximum possible pairwise distance between records is 166
bits, corresponding to a situation in which all discriminated
features present in one structure are absent from another
structure and vice versa. In practice, this sort of situation
never arises, and the most frequently encountered distances
are in the range of 45-50 bits. To ensure that the attenuation
functions measure density in a local sense, the threshold
should be somewhat less than these most commonly occurring
distances. Tests using threshold distances of 10, 20, 30, and
40 bits are described.

Algorithm. LASSOO is a multipass algorithm. It is con-
ceptually simple, involving first construction of relevant pools,
then scoring and ranking of external pool records, and finally
selection of high-scoring records. At each iteration a set of W
best scoring records are selected and moved from the external
pool to the internal pool, where W is the “window size”.
Addition of records to the internal pool will alter local density,
increasing it around the new record coordinates and decreasing
it slightly elsewhere due to the change in the pool size
normalization factor NI. The updated densities will of course
produce new scores for all of the remaining records in the
external pool, which, in turn, will result in a new set of
rankings. This added level of complexity, however, is exactly
the feedback that enables LASSOO to avoid the repeated
selection of structurally similar compounds.

When updating local densities, it is necessary to consider
only the pairwise distances between each new record being
added to the internal pool and the remaining records in the
external pool. The observed distance djk between a newly added
internal record j and each external record k is assigned to the
correct distance bin d, and the corresponding record count NIk-
(d) is incremented by 1. Target pool density does not change
between iterations, so it is not necessary to modify this
contribution to the scores.

An additional parameter in the algorithm is the window
size, W, which is the number of high-scoring records that are
accepted into the internal pool at each iteration. A large
window size results in fewer iterations and increases speed,
but because local densities are updated less frequently, it also
increases the chances of adding self-similar records to the
internal pool. To address this issue, we present results
obtained for window sizes of 10, 30, 100, and 1 000 records as
well as results from using an infinite window size. When tie
scores arise within a window, all records with the same score
are incorporated, even if the window size must be exceeded in
order to admit the entire block of records. Alternatively, one
could randomly pick tied records until the number specified
by window size had been accepted, though this was not done
here.

Validation Experiments. The ability of the algorithm to
identify target-like compounds is measured by spiking the
external pool with records that are taken from the same source
as that used for the target pool. Validation required carrying
out the procedure several times in order to generate some
statistics. Test-case pools for the validation experiments were
generated using random subsets of 10 000 records chosen from
both the ACD and NCI pools, and the CMC records were

scorek ) (RT/NT)∑
d)0

dmax

NTk(d)A(d) + (RI/NI)∑
d)0

dmax

NIk(d)A(d) (1)

step: A(d) )
1 (0 e d e dlimit); A(d) ) 0 (d > dlimit)

linear ramp: A(d) )
1 - d/dlimit (0 e d e dlimit); A(d) ) 0 (d > dlimit)

inverted parabola: A(d) )
1 - (d/dlimit)

2 (0 e d e dlimit); A(d) ) 0 (d > dlimit)

Gaussian: A(d) )
exp[-(2.146d/dlimit)

2] (0 e d e dlimit); A(d) ) 0 (d > dlimit)
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randomly divided into two subsets of 1 000 and 4 487. The NCI
records were treated as the internal pool, and the subset of
4 487 CMC records served as the target pool. ACD records
were combined with the remaining subset of 1 000 CMC
records (merging identical records, where necessary) to yield
a spiked test-case external pool of just under 11 000 records.

For each combination of attenuation function, threshold
distance, and window size, the LASSOO program was run with
10 different initial random pools (lists of compounds used may
be obtained from the authors in electronic form). As the
algorithm made its selections from the spiked external pool,
cumulative tallies were kept of the number of CMC records
extracted. When identical records were present in both the
CMC and ACD random subsets, these were attributed to the
CMC pool. These cumulative tallies were then averaged across
the set of 10 experiments to yield statistically smooth results
summarizing the rate at which CMC records were incorporated
into the internal pool.

To ascertain how differences in target and internal pool size
influence results, additional experiments were carried out
wherein the size of the initial internal pool was varied.
Selection and processing steps identical to those described
above were followed, except that instead of starting with an
internal pool of 10 000 NCI records, random subsets of either
4 487 or 20 000 NCI records were chosen. This yields internal
and target pools that are initially the same size (4 487) and
pools that exhibit more than a 4-fold difference in size (4 487
target records, 20 000 internal records). Experiments with each
size combination were carried out 10 different times using
favorable parameter combinations identified using the original
set of pool sizes.

The value of the present approach for directed diversity
selection was further assessed with a series of spiking experi-
ments in which either the target or internal pool density score
terms were “turned off”. Each run involved a Gaussian
attenuation function, a threshold distance of 20 bits, and a
window size of 10 records. The diversity of the internal library
during these tests was monitored by following the average
minimum distance between internal pool records as each
external record was added. Average minimum distance is
indicative of record separation, with increasing values corre-
sponding to decreasing redundancy. Coverage continuously
increases with addition of external records absent from the
internal pool. Controls involving unaided selection were also
run by simply picking external pool records at random.

We note that the process of ignoring internal density, given
by the initial internal library, actually removes the second
term from eq 1, and it is therefore not equivalent to simply
running LASSOO in its normal two-term mode with an empty
internal pool at the outset. The latter situation corresponds
to de novo selection, where a diverse, target-like internal pool
is created from scratch. LASSOO may certainly be used for
such purposes, although tests performed here always involved
the specification of an existing internal pool.

Run-Time Performance. Typical run-times for tests de-
scribed in this work, i.e., an external pool of ∼11 000 records,
an internal pool of 10 000, and a target pool of 4 487, took
approximately 15 CPU minutes with a window size of 100 (SGI
Indigo2 R10,000 with 64 Mb). No code optimization was
attempted, and the radial distributions of target and internal
record counts used for score calculations (eq 1) were read from
disk as needed during each iteration. While libraries of 10 000
compounds may be unrealistically small by today’s standards,
application to libraries with hundreds of thousands of com-
pounds is certainly possible and should take at most a few
days with the system we describe.

Results and Discussion

Analysis of Pairwise Distances. LASSOO scores
rely on local density distributions arising from the target
and internal pools, and these are determined by pair-
wise distances that link records in the external pool to
records in either the target pool or internal pool. Before

making decisions about which parameter settings to
investigate, it is instructive to carry out an analysis of
the relevant distance distributions. Histograms of pair-
wise distances from the initial pools created for the
spiking experiments are shown in Figure 2. Average
record counts from the 10 sets of random pools were
used to generate the histograms, and the ACD and CMC
components (10 000 and 1 000 records, respectively) of
the spiked external pools are displayed in separate
curves. As described previously, internal pools contained
10 000 NCI records and target pools contained 4 487
CMC records.

The positions of the curves along the horizontal axis
reflect the overall similarity between each pair of pools
and hence the similarity of the libraries from which they
were extracted. For example, the leftmost shifted curve
corresponds to distances between external records from
the ACD library and internal records from the NCI
library. With the present means of measuring distance,
then, one would conclude that the ACD and NCI
libraries are the most similar pair in the collection. On
the other hand, distances between external ACD records
and target CMC records give rise to the rightmost
shifted curve, suggesting that these two libraries are
the most dissimilar. Distances between external CMC
subsets and remaining CMC target records do not
appear most similar. This shows that fairly diverse
records comprise the CMC pool, despite the fact that
all are classified as drugs. Distances between external
CMC subsets and the internal (NCI) library records
appear shifted slightly to the left of the curve between
CMC external and target records. This is possibly an
artifact of the differing size of libraries compared
(10 000-1 000 vs 4 487-1 000) and statistical sampling
and is of no consequence to our results.

In choosing a reasonable threshold distance, we first
note that all distributions peak at around 45-50 bits
and that only a small fraction of pairwise distances are
less than about 15 bits. This indicates that a threshold
distance of 50 would, for a typical external record,
incorporate contributions to the local density from about
half of all target and internal pool records. Such a large
threshold would appear to be in conflict with the concept
of local density. At the other extreme, threshold dis-
tances smaller than about 15 bits might result in little
or no density being found for a significant fraction of
external records that are too far removed from any

Figure 2. Distribution of pairwise distances observed between
external pool records and target and internal pool records.
Distances from ACD and CMC records in the spiked external
pools are tabulated separately. Averaged data from 10 spiking
experiments are shown.
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target and internal pool records to calculate meaningful
scores; all such records receive identical scores of zero.

Figure 3 addresses these issues in a somewhat
different way. For each distance between 0 and 40 bits,
the fraction of external pool records that are located
within that distance of any 1, 10, 100, or 1 000 internal
records (solid lines) and target records (dashed lines) is
plotted. For example, about 50% of external records are
within 10 bits of some internal record, while only about
30% are that close to any target record. This leaves
substantial fractions (50% and 70%) of the external
records which would sample no internal or target pool
density if a threshold of 10 bits was employed. On the
other hand, every external record is within 30 bits of
some member of the internal or target pools, and most
have at least 100 neighbors within that distance. A
threshold of 30 bits, therefore, will assign at least some
internal and target density for each external record.
Overall, Figures 2 and 3 suggest that a threshold of
somewhere between 20 and 30 bits should provide
sufficient local density to make an informed assessment
of each external record while limiting the amount of
information provided by members of the internal and
target pools which are rather dissimilar to the external
record being scored.

Variation of Threshold Distance and Attenua-
tion Function. Figures 4 and 5 illustrate how rapidly
the drug-like CMC records are extracted from spiked
external pools when threshold distances of 10, 20, 30,
and 40 bits are used, along with a window size of 10
records and a Gaussian attenuation function. Figure 4
shows average results for the first 1 000 records se-
lected, and Figure 5 shows the corresponding behavior
over the course of selecting all external records. The
uppermost lines denote perfect performance, where all
spiked CMC records are selected before any ACD
records, and the lower lines indicate the rate of CMC
record selection that would be expected by chance.

LASSOO clearly biases selection to favor the drug-
like CMC compounds, with up to 5 times as many CMC

records selected in the first 1 000 records as compared
to chance. A threshold distance of 20 bits appears to
provide the best overall enrichment, though for the first
few hundred records selected, all threshold distances
tested yield similar results. Extending the threshold to
30 then 40 bits progressively degrades performance, and
reducing to 10 bits is clearly detrimental after about
1 500 records have been chosen. This same trend is
repeated regardless of the attenuation function or
window size used.

A conspicuous feature of the curve associated with a
10-bit threshold distance (Figure 5) is the near linear
stretch between about 1 500 and 6 000 records selected.
This corresponds to the simultaneous selection of ap-
proximately 4 700 records which have identical scores
of 0. All of these records are more than 10 bits away
from any target or internal record, so they cannot be
assessed as either target-like or internally redundant.
Records selected prior to this block have positive scores
and thus are within 10 bits of at least some target
records. Records selected after this block may or may
not be within the threshold distance of target records,
but they are close enough to some internal records to
be assigned an overall negative score. Thus, even for
the pathologic case of a restrictively small distance

Figure 3. Nearest-neighbor counts from external pool records
to differing numbers of internal (solid lines) and target (broken
lines) records. Each series of four curves denotes, from left to
right, the fraction of external records that are within a given
pairwise distance of 1, 10, 100, and 1 000 internal or target
records. For example, ∼50% of external records are within 10-
bit distance of at least one internal record, and ∼30% are
within this distance of a target record; ∼15% have at least 10
internal records within 10 bits, and <5% have 10 or more
target records within this distance.

Figure 4. Cumulative number of CMC records selected with
different threshold distances for the first 1 000 external records
selected. The upper straight line delimits the maximum
possible CMC count, and the lower line represents the rate of
random expectation. Curves depict average results (10 spiking
experiments each) for threshold distances (T.D.) of 10, 20, 30,
and 40 bits using a Gaussian attenuation function and window
size of 10 records.

Figure 5. Cumulative number of CMC records selected with
different threshold distances over the course of selecting all
external records. Except for the range of records shown, this
plot is the same as Figure 4.
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threshold, LASSOO first selects drug-like records which
are distinct from existing members of the internal pool,
then records with ambiguous characteristics, and finally
records which are decidedly similar to internal library
members.

Attenuation functions which decay smoothly with
distance reduce the influence of target and internal pool
records as they become more dissimilar to the external
record being scored. They provide a smooth transition
from important to irrelevant as record distance moves
from 0 toward the threshold value. Figure 6 shows how
different attenuation functions influence the recovery
of CMC records from the spiked pool when a threshold
distance of 20 bits and a window size of 10 records are
used. Employing any of the smooth attenuation func-
tions improves performance relative to using an abrupt
steplike cutoff, but there is little difference among
smooth functional forms. We note that similar trends
are seen regardless of which distance threshold is
employed. As the Gaussian function appears to be
marginally better than the others, we consider this in
all further examples.

Variation of Window Size. Window size dictates
how many favorably ranking records are transferred
into the internal pool at each iteration and therefore
how frequently internal pool density is updated to reflect
acceptance of external records. Because there is no
updating until the end of the iteration, a large window
size can lead to many self-similar records being chosen
at once. With a smaller window, internal pool density
is updated more frequently, so that overpopulated
regions in the internal pool get translated to external
record scores in a more timely fashion. In the limit, a
window size of 1 should lead to near-optimal, nonre-
dundant record selection. Practical considerations, how-
ever, favor a large window size, as this translates to
fewer iterations and faster run-times. Choosing an
acceptable window size thus represents a tradeoff
between minimizing redundancy in the records selected
and minimizing the time required to carry out the
procedure.

As it turns out, window size has very little effect on
the rate at which CMC records are recovered from
spiked libraries. Window sizes of 10, 30, and 100 records
yield curves that are virtually identical to those in
Figures 4 and 5, where a window size of 10 was used.
Performance is slightly poorer with a window size of

1 000 and poorer still with an infinite window (i.e. a
single iteration). For example, after selection of 2 500
records, the average numbers of CMC records recovered
for window sizes of 10, 30, 100, 1 000, and infinite are
737.1, 738.4, 738.2, 731.3, and 713.9, respectively (10
test runs, standard deviations of 10 or less in all cases).
Large window sizes mean that the algorithm gets no
feedback until many records are accepted, and the
marginally poorer performance stemming from large
(and infinite) window sizes may be attributed to this
lack of feedback. In terms of recovering drug-like
records, a window size of about 100 seems adequate with
the present system.

Variation of Pool Size. Target and internal pools
will generally differ in size, either initially or during
acquisition of external records, so it is important to
investigate how such differences might influence algo-
rithm performance. Results of spiking experiments
described above employed initial target and internal
pools differing in size by about 2-fold (4 487 target
records, 10 000 internal records). For comparison, ad-
ditional spiking experiments were run using equal-sized
target and internal pools of 4 487 records and pools that
differed in size by more than a factor of 4 (4 487 target
records, 20 000 internal records). The spiked external
pools for these tests were the same as before, with
10 000 ACD records and 1 000 CMC records. Using a
Gaussian attenuation function and a window size of 10
records, these experiments showed virtually no change
in the recovery rates of CMC records when threshold
distances of 20, 30, and 40 bits are employed. With a
threshold of 10 bits, however, the number of external
records that receive tie scores of 0 decreases with
increasing initial internal pool size. This is because a
more heavily populated internal pool tends to have
fewer gaps in the descriptor space, so external records
are more likely to have internal record density within
10 bits. As a consequence, records that might otherwise
get tie scores of 0 are more frequently differentiated,
and results improve very slightly when larger internal
pools are employed. With a more suitable threshold
distance, however, it appears that widely varying pools
sizes have little impact on algorithm performance.

Diversity of Records Selected. Monitoring the
recovery of CMC records from spiked libraries il-
lustrates how LASSOO can be used to preferentially
extract drug-like compounds, but another distinguishing
feature of the algorithm is its ability to maintain
diversity in the internal library. As the selection process
is carried out, we measure diversity by examining the
average distance between each internal record and its
nearest neighbor in the same pool. This average mini-
mum distance is a measure of typical inter-record
spacing, with large values occurring for pools containing
well-separated records and smaller values occurring
when more tightly clumped clusters of records are
present. Curves showing average minimum distance as
a function of the number of records selected are shown
in Figure 7. The different curves correspond to random
selection (dashed line), normal LASSOO selection (heavy
line), the use of only target pool density when scoring
(lower line), and the use of only internal pool density
when scoring (upper line). Results represent an average
of 10 spiking experiments, utilizing a threshold distance

Figure 6. Cumulative number of CMC records selected with
different attenuation functions or no attenuation function.
Curves depict average results (10 spiking experiments each)
for threshold distance of 20 bits and window size of 10 records.
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of 20 bits, a Gaussian attenuation function, and a
window size of 10 records.

When only internal pool density is used for scoring,
there is no bias in favor of target-like records, and
diversity becomes the sole means of ranking external
records. The highest-ranking records in this case are
relatively far from internal pool members, and over the
course of selecting these records, the average minimum
distance in the internal pool increases from about 8 bits
to more than 9.5 bits (upper curve). As progressively
more external records are accepted, gaps between
internal records begin to be filled in and the average
inter-record spacing drops.

When considering only target pool density (lower
curve), the driving force becomes purely that of selecting
target-like records. This results in a pronounced lower-
ing of diversity in the internal pool, as the highest-
ranking records will be those located within dense,
target-like clusters. These tightly clumped collections,
which frequently comprise sets of analogues from the
CMC pool, are preferentially extracted and placed in the
internal pool, lowering the average pairwise record
separation. Eventually, the target-like clusters are
exhausted and the remaining external records, which
offer more diversity by default, are selected.

When both internal and target pool densities are used
in scoring, i.e., the normal mode of operation, average
record separation drops slightly at first and then climbs
in a fairly rapid fashion until diversity coincides with
what was obtained when only internal density was
considered (heavy curve). This sort of intermediate
behavior, combined with the results in Figures 4 and
5, helps to illustrate the intended purpose of LASSOO,
that is, balancing quality and diversity.

Scores and Example Ranked Compounds. Out-
put from LASSOO consists of a ranked list of external
records, their overall scores, and the separate internal
and target pool score components. From the ranked
records, the corresponding library compounds may be
chosen directly, or in the case where several indistin-
guishable compounds are associated with a single
record, additional criteria such as price, stability, or ease
of synthesis may be applied to complete the decision.

Figure 8 contains compounds corresponding to several
high-, medium-, and low-ranking external records from
one of the spiking experiments. These compounds serve
as examples for illustrating some of the underlying
trends in the score distributions.

Figure 9 contains plots of overall and component
scores as a function of rank for the first 500 records
selected in the single spiking experiment. Steroids
comprise 49 of the first 50 records, with the CMC
portion of the external pool contributing 20 of these
steroid records. For all of these highest-ranking records,
both target and internal score components are signifi-
cant, indicating an abundance of steroids in both of
these pools. The high-low separation of score compo-
nents seen with the highest-ranking records is primarily
a consequence of the different pool size normalization
factors; i.e., the steroids already present in the internal
pool represent a smaller fraction of the total records
compared to the steroids in the target pool.

A high density of steroids in, for example, the full
CMC pool (5 487 records) may be confirmed by examin-
ing testosterone. There are seven CMC compounds with
MDL key representations that are identical to testoster-
one (one record in the CMC pool) and a total of 43
records in this pool that differ by 5 or fewer bits from
testosterone. Since the target pool is based on CMC
compounds, this tight localization of steroid records
dominates the selection process at the beginning, with
46 steroid records being extracted before the first
nonsteroid compound is encountered. During these early
stages, even the nonsteroid compounds exhibit many
structural characteristics of true steroids (Figure 8,
group A). While the selection of redundant compounds
appears to be at odds with the desire for diversity in
the internal library, it is difficult to avoid when the
target pool contains such a strong bias toward any one
class of compound. Use of a target pool with a sparser
sampling of these dense clusters should reduce this type
of undesirable behavior.

After about 100 records have been selected, a more
balanced mix of compound classes begins to be appear.
As the selection of the first 500 proceeds, there is a
general trend toward fewer and fewer records with large
score components. Records with weak target compo-
nents and still weaker internal components (Figure 8,
group B) are eventually selected, not so much because
of target-like properties but because they increase the
diversity of the internal pool. Beyond the first 500
records, the general pattern of decreasing score compo-
nent size continues until rank 2494, where a block of
401 records with tie scores of 0 begins. These ambiguous
compounds, e.g., Figure 8, group C, are more than 20
bits away from anything in the target or internal pools
(for this spiking experiment) and serve only to increase
diversity.

Figure 10 contains overall and component scores
plotted against rank for the lowest-scoring records in
the spiking experiment. Many of these records have
target pool scores of 0 and internal pool scores that are
quite high, indicating that (1) they are not drug-like and
(2) they are highly redundant with other members of
the internal pool. Examples compounds are shown in
Figure 8, group D.

The very last records selected have non-zero target

Figure 7. Average minimum distance between internal pool
records plotted against the number of external records selected
(i.e. added to the internal pool). The heavy curve depicts
normal algorithm behavior, and the dotted curve corresponds
to random record selection. The uppermost curve corresponds
to the situation where only internal pool records factor into
scores. Average data from 10 spiking experiments with a
threshold distance of 20 bits, a Gaussian attenuation function,
and a window size of 10 records are shown.
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terms, indicating that they are somewhat drug-like, but
their exceedingly large internal scores suggest that they
also contain highly redundant structural motifs. As
illustrated by the example compounds in Figure 8, group
E, the last records selected probably contain a subset
or composite of moieties commonly found in drugs, but
the overall structures are too similar to previously
chosen ones to add much uniqueness to the library.

Conclusions
We have demonstrated an effective means of priori-

tizing compound selection for augmenting an existing

chemical screening library. The LASSOO algorithm is
conceptually simple and depends on only a few param-
eters. Selection of compounds requires no a priori rules
for evaluating what is “good” and what is “bad” but,
instead, relies on a target library that automatically
encodes a wealth of information about desirable char-
acteristics. At the same time, the composition of the
existing library is taken into consideration to avoid
addition of chemically redundant compounds.

One critical program parameter is the threshold
distance that is used to compute library population
densities around candidate compounds. For a system
utilizing MDL keys and a city-block distance, a thresh-
old distance of 20 bits performs best, and there is

Figure 8. Example CMC and ACD compounds corresponding to high-, medium-, and low-ranking records from a spiking
experiment which employed a threshold distance of 20 bits, a Gaussian attenuation function, and a window size of 10 records.
Structures and names are as extracted from the source databases. Overall ranking and the rankings within either the CMC or
ACD subsets of records are shown, along with overall scores and separated score components; for presentation purposes, score
values are multiplied by 1 000. Group A compounds correspond to the highest -ranking, nonsteroid records. Group B compounds
are not particularly target-like but are dissimilar to internal records and so increase diversity. Group C compounds are too far
(i.e. >20 bits) from any target or internal records to be fairly assessed and so receive tie scores of 0; these records correspond to
rankings 2494-2894. Group D compounds are not target-like yet somewhat similar to internal records and thus rank poorly.
Group E compounds are somewhat target-like but also have many similar internal records making them redundant; these records
rank last.

Figure 9. Overall scores (solid line) together with separated
target (solid diamonds) and internal score (open diamonds)
components for the highest-ranking 500 records from a spiking
experiment with a threshold distance of 20 bits, a Gaussian
attenuation function, and a window size of 10 records. Scores
and component values are multiplied by 1 000 for ease of
presentation.

Figure 10. Overall scores (solid line) together with separated
target (solid diamonds) and internal score (open diamonds)
components for the lowest-ranking 500 records from the same
experiment as shown in Figure 9. Scores and component values
are multiplied by 1 000.

LASSOO Journal of Medicinal Chemistry, 1999, Vol. 42, No. 22 4703



relatively little sensitivity to other algorithm param-
eters. Use of a smooth attenuation function improves
performance slightly, but there appears to be little
difference among the functional forms investigated here.

LASSOO is a general method, and in principle, any
set of chemical descriptors may be combined with an
appropriate distance function to operate on any collec-
tion of compounds which encode desirable or undesir-
able characteristics. Thus, members of a commercial,
proprietary, or virtual chemical library may be evalu-
ated for purchase, use, or synthesis to augment an
existing screening library. In addition, a library may
be designed from scratch simply by running the algo-
rithm without specifying an initial internal library.

The LASSOO methodology is expected to increase the
hit rates of desirable drug-like compounds by enabling
the design of diverse, high-quality libraries that are
relatively small by today’s standards. This capability
takes on increasing importance as the number of
potential targets grows and researchers come to the
realization that screening huge libraries is neither an
efficient strategy nor a sufficient means for discovering
leads.17 Diverse libraries enriched in drug-like com-
pounds should supply hits in a variety of assays and
make the process of going from a lead to a pharmaceuti-
cal candidate more rapid and successful.

We are currently exploring the extension of these
techniques to the case of negative reference libraries,
which could be composed of any collection of compounds
with undesirable properties. Inclusion of a score term
that penalizes selection of compounds similar to those
in a negative reference pool should then disfavor selec-
tion compounds with undesirable attributes.

References
(1) Gordon, E. M. Libraries of Non-Polymeric Organic Molecules.

Curr. Opin. Biotechnol. 1995, 6, 624-631.
(2) Ferguson, A. M.; Patterson, D. E.; Garr, C.; Underiner, T.

Designing Chemical Libraries for Lead Discovery. J. Biomol.
Screen. 1996, 1, 65-73.

(3) Martin, E. J.; Blaney, J. M.; Siani, M. A.; Spellmeyer, D. C.;
Wong, A. K.; Moos, W. H. Measuring Diversity: Experimental
Design of Combinatorial Libraries for Drug Discovery. J. Med.
Chem. 1995, 38, 1431-1436.

(4) Martin, E. J.; Critchlow, R. E. J. Comb. Chem. 1999, 1, 32-45.
(5) Gibbon, J. A.; Taylor, E. W.; Braeckman, R. A. In Combinatorial

Chemistry and Molecular Diversity in Drug Discovery; Gordon,
E. M., Kerwin, J. F., Eds.; Wiley-Liss: New York, 1998; pp 453-
474.

(6) Ghose, A. K.; Viswanadhan, A. K.; Wendolowski, J. J. A
Knowledge Based Approach in Designing Combinatorial or
Medicinal Chemistry Libraries for Drug Dsicovery. 1. A Qualita-
tive and Quantitative Characterization of Know Drug Databases.
J. Comb. Chem. 1999, 1, 55-68.

(7) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeny, P. J.
Experimental and Computational Approaches to Estimate Solu-
bility and Permeability in Drug Discovery and Development
Settings. Drug Delivery Rev. 1997, 23, 3-25.

(8) Ajay; Walters, W. P.; Murcko, M. A. Can We Learn to Distinguish
between “Drug-like” and “Nondrug-like” Molecules? J. Med.
Chem. 1998, 41, 3314-3324.

(9) Sadowski, J.; Kubinyi, H. A Scoring Scheme for Discriminating
between Drugs and Nondrugs. J. Med. Chem. 1998, 41, 3325-
3329.

(10) The ACD, NCI3D, and CMC3D databases are commercially
available from MDL Information Systems, Inc., 14600 Catalina
St, San Leandro, CA 94577.

(11) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs.
1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887-2893.

(12) ISISTM/Base 2.1.4; MDL Information Systems, Inc., San Lean-
dro, CA.

(13) Brown, R. D.; Martin, Y. C. Use of Structure-Activity Data to
Compare Structure-Based Clustering Methods and Descriptors
for Use in Compound Selection. J. Chem. Inf. Comput. Sci. 1996,
36, 572-584.

(14) Brown, R. D.; Martin, Y. C. The Information Content of 2D and
3D Structural Descriptors Relevant to Ligand-Receptor Bind-
ing. J. Chem. Inf. Comput. Sci. 1997, 37, 1-9.

(15) Flower, D. R. On the Properties of Bit String-Based Measures
of Chemical Similarity. J. Chem. Inf. Comput. Sci. 1998, 38,
379-386.

(16) Dixon, S. L.; Koehler, R. T. The Hidden Component of Size in
2D Fragment Descriptors: Side-Effects of Sampling in Bioactive
Libraries. J. Med. Chem. 1999, 42, 2887-2900.

(17) Dixon, S. L.; Villar, H. O. Bioactive Diversity and Screening
Library Selection via Affinity Fingerprinting. J. Chem. Inf.
Comput. Sci. 1998, 38, 1192-1203.

JM990312G

4704 Journal of Medicinal Chemistry, 1999, Vol. 42, No. 22 Koehler et al.


